大数据发展趋势
2018-11-01 13:17
OSIS
海协网
近年来,随着互联网和智能硬件的快速普及,数据以爆炸方式增长。2015 年全球大数据市场规模达384 亿美元;到2017 年,全球大数据市场规模预计将达到501 亿美元。下面进行大数据发展趋势分析。
2014年,我国大数据相关硬件市场在451亿元,到2015年已经达到795亿元的规模。随着大数据相关产业的快速发展及应用场景的扩大,我国大数据硬件层市场将迎来一个崭新的快速发展的局面。预计2016年市场规模将达到1093亿元,2020年将突破至2385亿元。
就中国大数据市场而言,大数据软件市场占比较小。2012年,大数据软件市场规模约为0.54亿元,2014年市场规模约为2.48亿元,我们预测,2016-2021年,中国大数据软件市场规模年均复合增长率约为65%。预计到2021年,其市场规模达到80亿元。
大数据发展趋势一、大数据和开源
Apache Hadoop、Spark和其他开源应用程序已经成为大数据技术空间的主流,而且这种趋势似乎可能会持续下去。一项调查发现,近60%的企业预计到今年年底将采用Hadoop集群投入生产。根据调研机构Forrester公司的报告,Hadoop的使用量每年增长32.9%。
专家表示,到2017年,许多企业将扩大对Hadoop和NoSQL技术的使用,并寻找加快大数据处理的途径。许多人寻求能够让他们实时访问和响应数据的技术。
大数据发展趋势二、内存技术
内存技术是企业正在研究加速大数据处理的技术之一。在传统数据库中,数据存储在配备有硬盘驱动器或固态驱动器(SSD)的存储系统中。而内存技术可以将数据存储在RAM中,并且存取速度要快很多倍。Forrester 公司的一份报告预测,内存数据结构市场规模每年将增长29.2%。
目前有几家不同的供应商提供内存数据库技术,特别是SAP、IBM、Pivotal公司。
大数据发展趋势三、机器学习
随着大数据分析能力的进步,一些企业已经开始投资机器学习(ML)。机器学习是人工智能的一个分支,其重点在于允许计算机在没有明确编程的情况下学习新事物。换句话说,它分析现有的大数据存储库来得出改变应用程序行为的结论。
根据Gartner公司的研究,机器学习是2017年十大战略技术趋势之一。报告指出,当今最先进的机器学习和人工智能系统正在超越传统的基于规则的算法,以创建理解、学习、预测,以及潜在地自主操作系统。
大数据发展趋势四、预测分析
预测分析与机器学习密切相关。实际上,机器学习系统经常为预测分析软件提供引擎。在大数据分析的早期,企业正在回顾他们的数据,看看发生了什么,然后他们开始使用分析工具来调查为什么发生这些事情。而预测分析则更进一步,可以使用大数据分析来预测未来会发生什么。
根据普华永道公司在2016年的研究调查,使用预测分析技术的企业数量很低,只有29%。然而,最近有很多供应商提供了预测分析工具,因此随着企业越来越多地了解这个强大工具,这个数字可能会在未来几年飙升。
大数据发展趋势五、大数据智能应用程序
企业使用机器学习和人工智能技术的另一种方式是创建智能应用程序。这些应用程序通常包含大数据分析,分析用户以前的行为,以提供个性化和更好的服务。现在人们非常熟悉的一个例子是当前推动许多电子商务和娱乐应用程序的推荐引擎。
在2017年排名前十的战略技术趋势中,名列Gartner公司的报告中第二位的技术是智能应用程序。“在接下来的十年中,几乎所有的应用程序和服务都将包含一定程度的人工智能。”Gartner研究员副总裁David Cearley说,“这将形成一个长期的趋势,将不断发展和扩大人工智能和机器学习应用程序和服务的应用。”
随着移动网民的增长和物联网渗透率的进一步提升,移动端的数据价值已经凸显。截至2016 年,我国手机网民数量已近7.0亿,占整体网民数量的95.1%。手机,因随身携带、时刻在线等特点,已取代PC,成为网络生活新的中心。以上便是大数据发展趋势的所有分析了。
2014年,我国大数据相关硬件市场在451亿元,到2015年已经达到795亿元的规模。随着大数据相关产业的快速发展及应用场景的扩大,我国大数据硬件层市场将迎来一个崭新的快速发展的局面。预计2016年市场规模将达到1093亿元,2020年将突破至2385亿元。
就中国大数据市场而言,大数据软件市场占比较小。2012年,大数据软件市场规模约为0.54亿元,2014年市场规模约为2.48亿元,我们预测,2016-2021年,中国大数据软件市场规模年均复合增长率约为65%。预计到2021年,其市场规模达到80亿元。
大数据发展趋势一、大数据和开源
Apache Hadoop、Spark和其他开源应用程序已经成为大数据技术空间的主流,而且这种趋势似乎可能会持续下去。一项调查发现,近60%的企业预计到今年年底将采用Hadoop集群投入生产。根据调研机构Forrester公司的报告,Hadoop的使用量每年增长32.9%。
专家表示,到2017年,许多企业将扩大对Hadoop和NoSQL技术的使用,并寻找加快大数据处理的途径。许多人寻求能够让他们实时访问和响应数据的技术。
大数据发展趋势二、内存技术
内存技术是企业正在研究加速大数据处理的技术之一。在传统数据库中,数据存储在配备有硬盘驱动器或固态驱动器(SSD)的存储系统中。而内存技术可以将数据存储在RAM中,并且存取速度要快很多倍。Forrester 公司的一份报告预测,内存数据结构市场规模每年将增长29.2%。
目前有几家不同的供应商提供内存数据库技术,特别是SAP、IBM、Pivotal公司。
大数据发展趋势三、机器学习
随着大数据分析能力的进步,一些企业已经开始投资机器学习(ML)。机器学习是人工智能的一个分支,其重点在于允许计算机在没有明确编程的情况下学习新事物。换句话说,它分析现有的大数据存储库来得出改变应用程序行为的结论。
根据Gartner公司的研究,机器学习是2017年十大战略技术趋势之一。报告指出,当今最先进的机器学习和人工智能系统正在超越传统的基于规则的算法,以创建理解、学习、预测,以及潜在地自主操作系统。
大数据发展趋势四、预测分析
预测分析与机器学习密切相关。实际上,机器学习系统经常为预测分析软件提供引擎。在大数据分析的早期,企业正在回顾他们的数据,看看发生了什么,然后他们开始使用分析工具来调查为什么发生这些事情。而预测分析则更进一步,可以使用大数据分析来预测未来会发生什么。
根据普华永道公司在2016年的研究调查,使用预测分析技术的企业数量很低,只有29%。然而,最近有很多供应商提供了预测分析工具,因此随着企业越来越多地了解这个强大工具,这个数字可能会在未来几年飙升。
大数据发展趋势五、大数据智能应用程序
企业使用机器学习和人工智能技术的另一种方式是创建智能应用程序。这些应用程序通常包含大数据分析,分析用户以前的行为,以提供个性化和更好的服务。现在人们非常熟悉的一个例子是当前推动许多电子商务和娱乐应用程序的推荐引擎。
在2017年排名前十的战略技术趋势中,名列Gartner公司的报告中第二位的技术是智能应用程序。“在接下来的十年中,几乎所有的应用程序和服务都将包含一定程度的人工智能。”Gartner研究员副总裁David Cearley说,“这将形成一个长期的趋势,将不断发展和扩大人工智能和机器学习应用程序和服务的应用。”
随着移动网民的增长和物联网渗透率的进一步提升,移动端的数据价值已经凸显。截至2016 年,我国手机网民数量已近7.0亿,占整体网民数量的95.1%。手机,因随身携带、时刻在线等特点,已取代PC,成为网络生活新的中心。以上便是大数据发展趋势的所有分析了。